3-manifolds Having Complexity at Most 9

نویسندگان

  • Bruno Martelli
  • Carlo Petronio
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-manifolds Having Complexity at Most 9 Introduction

Contents 1 Complexity theory and an overview of the algorithm 3 1. 2 Surfaces and transverse surfaces in a spine 15 2.

متن کامل

Non-orientable 3-manifolds of small complexity

We classify all closed non-orientable P-irreducible 3-manifolds having complexity up to 6 and we describe some having complexity 7. We show in particular that there is no such manifold with complexity less than 6, and that those having complexity 6 are precisely the 4 flat non-orientable ones and the filling of the Gieseking manifold, which is of type Sol. The manifolds having complexity 7 we d...

متن کامل

Non-orientable manifolds of small complexity

We classify all closed non-orientable P-irreducible manifolds having complexity up to 6 and we describe some having complexity 7. We show in particular that there is no such manifold with complexity less than 6, and that those having complexity 6 are precisely the 4 flat non-orientable ones. The manifolds having complexity 7 we describe are Seifert manifolds of type H × S and manifolds with non...

متن کامل

Small Hyperbolic 3-Manifolds With Geodesic Boundary

We classify the orientable finite-volume hyperbolic 3-manifolds having nonempty compact totally geodesic boundary and admitting an ideal triangulation with at most four tetrahedra. We also compute the volume of all such manifolds, we describe their canonical Kojima decomposition, and we discuss manifolds having cusps. The manifolds built from one or two tetrahedra were previously known. There a...

متن کامل

Coverings and minimal triangulations of 3–manifolds

Given a closed, irreducible 3–manifold, its complexity is the minimum number of tetrahedra in a (pseudosimplicial) triangulation of the manifold. This number agrees with the complexity defined by Matveev [5] unless the manifold is S , RP or L.3; 1/. The complexity for an infinite family of closed manifolds has first been given by the authors in [4]. The family consisted of lens spaces having a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008